A decision-analytic framework for interpretable recommendation systems with multiple input data sources: a case study for a European e-tailer
Author:
Publisher
Springer Science and Business Media LLC
Subject
Management Science and Operations Research,General Decision Sciences
Link
http://link.springer.com/content/pdf/10.1007/s10479-021-03979-4.pdf
Reference63 articles.
1. Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749.
2. Al-Shamri, M. Y. H. (2016). User profiling approaches for demographic recommender systems. Knowledge-Based Systems, 100, 175–187.
3. Albadvi, A., & Shahbazi, M. (2010). Integrating rating-based collaborative filtering with customer lifetime value: New product recommendation technique. Intelligent Data Analysis, 14(1), 143–155.
4. Ando, T. (2018). Merchant selection and pricing strategy for a platform firm in the online group buying market. Annals of Operations Research, 263(1–2), 209–230.
5. Baesens, B., Setiono, R., Mues, C., & Vanthienen, J. (2003). Using neural network rule extraction and decision tables for credit-risk evaluation. Management Science, 49(3), 312–329.
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Design of Multi-Source Data Collection Cloud Platform for Transmission Lines Integrating Technology;2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC);2023-12-04
2. Communication Topology Scheme of Complex Low-Pressure Platform Area HPLC Signal Isolation and Attenuation Control Station Area Based on Cross-Platform Multi-Source Data Fusion;2023 IEEE 4th Annual Flagship India Council International Subsections Conference (INDISCON);2023-08-05
3. Personalized recommendation model of electronic commerce in new media era based on semantic emotion analysis;Frontiers in Psychology;2022-07-22
4. Rating prediction of recommended item based on review deep learning and rating probability matrix factorization;Electronic Commerce Research and Applications;2022-07
5. A PCA-AdaBoost model for E-commerce customer churn prediction;Annals of Operations Research;2022-01-16
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3