Abstract
AbstractFor a given sequence $$b_k$$
b
k
of non-negative real numbers, the number of weighted partitions of a positive integer n having m parts $$c_{n,m}$$
c
n
,
m
has bivariate generating function equal to $$\prod _{k=1}^\infty (1-yz^k)^{-b_k}$$
∏
k
=
1
∞
(
1
-
y
z
k
)
-
b
k
. Under the assumption that $$b_k\sim Ck^{r-1}$$
b
k
∼
C
k
r
-
1
, $$r>0$$
r
>
0
, and related conditions on the Dirichlet generating function of the weights $$b_k$$
b
k
, we find asymptotics for $$c_{n,m}$$
c
n
,
m
when $$m=m(n)$$
m
=
m
(
n
)
satisfies $$m=o\left( n^\frac{r}{r+1}\right) $$
m
=
o
n
r
r
+
1
and $$\lim _{n\rightarrow \infty }m/\log ^{3+\epsilon }n=\infty $$
lim
n
→
∞
m
/
log
3
+
ϵ
n
=
∞
, $$\epsilon >0$$
ϵ
>
0
.
Funder
Queen Mary University of London
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Legendre-signed partition numbers;Journal of Mathematical Analysis and Applications;2025-02