Depth-based Sampling and Steering Constraints for Memoryless Local Planners

Author:

Nguyen Binh T.ORCID,Nguyen Linh,Choudhury Tanveer A.,Keogh Kathleen,Murshed Manzur

Abstract

AbstractBy utilizing only depth information, the paper introduces a novel two-stage planning approach that enhances computational efficiency and planning performances for memoryless local planners. First, a depth-based sampling technique is proposed to identify and eliminate a specific type of in-collision trajectories among sampled candidates. Specifically, all trajectories that have obscured endpoints are found through querying the depth values and will then be excluded from the sampled set, which can significantly reduce the computational workload required in collision checking. Subsequently, we apply a tailored local planning algorithm that employs a direction cost function and a depth-based steering mechanism to prevent the robot from being trapped in local minima. Our planning algorithm is theoretically proven to be complete in convex obstacle scenarios. To validate the effectiveness of our DEpth-based both Sampling and Steering (DESS) approaches, we conducted experiments in simulated environments where a quadrotor flew through cluttered regions with multiple various-sized obstacles. The experimental results show that DESS significantly reduces computation time in local planning compared to the uniform sampling method, resulting in the planned trajectory with a lower minimized cost. More importantly, our success rates for navigation to different destinations in testing scenarios are improved considerably compared to the fixed-yawing approach.

Funder

Federation University Australia

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online State-to-State Time-Optimal Trajectory Planning for Quadrotors in Unknown Cluttered Environments;2024 International Conference on Unmanned Aircraft Systems (ICUAS);2024-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3