Abstract
AbstractCooperative trajectory planning of aerial-ground systems is a fundamental and challenging problem, which aims to leverage the aerial information to assist the ground tasks. Existing methods often suffer from suboptimal trajectories or computation burden. In this paper, we address cooperative trajectory planning of aerial-ground systems in which an unmanned ground vehicle (UGV) plans its local trajectory in real-time with the assistance of an unmanned aerial vehicle (UAV). Firstly, the UAV generates guidance trajectory using nonlinear model predictive control (NMPC), which considers the obstacle distribution density as a factor reflecting the coupling effect of multiple obstacles on the UGV, thereby avoiding local minima problem and improving the feasibility of the planned trajectory. Secondly, a null-space-based behavioral control (NSBC) framework is employed to merge the guidance trajectory into the UGV’s own planned one as a task. Finally, an event triggering task supervisor is developed for the UGV to decide the priorities of all tasks, which reduces the switching frequency of task priorities brought by traditional rule-based task supervisors. Both simulation and experiment results show that the proposed approach has superior trajectory planning performance in terms of trajectory error, on-line computation time and the success rate of task execution.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC