Automatic Robot Hand-Eye Calibration Enabled by Learning-Based 3D Vision

Author:

Li Leihui,Yang Xingyu,Wang Riwei,Zhang Xuping

Abstract

AbstractHand-eye calibration, a fundamental task in vision-based robotic systems, is commonly equipped with collaborative robots, especially for robotic applications in small and medium-sized enterprises (SMEs). Most approaches to hand-eye calibration rely on external markers or human assistance. We proposed a novel methodology that addresses the hand-eye calibration problem using the robot base as a reference, eliminating the need for external calibration objects or human intervention. Using point clouds of the robot base, a transformation matrix from the coordinate frame of the camera to the robot base is established as “I=AXB.” To this end, we exploit learning-based 3D detection and registration algorithms to estimate the location and orientation of the robot base. The robustness and accuracy of the method are quantified by ground-truth-based evaluation, and the accuracy result is compared with other 3D vision-based calibration methods. To assess the feasibility of our methodology, we carried out experiments utilizing a low-cost structured light scanner across varying joint configurations and groups of experiments. The proposed hand-eye calibration method achieved a translation deviation of 0.930 mm and a rotation deviation of 0.265 degrees according to the experimental results. Additionally, the 3D reconstruction experiments demonstrated a rotation error of 0.994 degrees and a position error of 1.697 mm. Moreover, our method offers the potential to be completed in 1 second, which is the fastest compared to other 3D hand-eye calibration methods. We conduct indoor 3D reconstruction and robotic grasping experiments based on our hand-eye calibration method. Related code is released at https://github.com/leihui6/LRBO.

Funder

Aarhus Universitet

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3