1. H. Berthod-Zaborowski, Calcul des intégrales de la forme % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamaapedabaGaamOraiaacIcacaWG4bGaaiykaiaadYeacaWG4bGa% amizaiaadIhacaGG7aaaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aa% aa!4761!\[\int_0^1 {F(x)Lxdx;} \] contained in: H. Mineur, Techniques de calcul numérique, Librairie Polytechnique Ch. Béranger, Paris (1952), pp. 555?556.
2. A. H. Stroud and Don Secrest, Gaussian quadrature formulas, Prentice-Hall, Englewood Cliffs, New Jersey (1966), pp. 90?92 and 301?305.
3. B. Danloy, Numerical construction of Gaussian quadrature formulas for % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamaapedabaGaaiikaiabgkHiTiaabYeacaqGVbGaae4zaiaadIha% caGGPaGaaiOlaiaadIhadaahaaWcbeqaaiabeg7aHbaaaeaacaaIWa% aabaGaaGymaaqdcqGHRiI8aOGaaiOlaiaadAgacaGGOaGaamiEaiaa% cMcacaGGUaGaamizaiaadIhaaaa!4FC0!\[\int_0^1 {( - {\text{Log}}x).x^\alpha} .f(x).dx\]and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamaapedabaGaamyramaaBaaaleaacaWGTbaabeaakiaacIcacaWG% 4bGaaiykaiaac6cacaWGMbGaaiikaiaadIhacaGGPaGaaiOlaiaads% gacaWG4baaleaacaaIWaaabaGaeyOhIukaniabgUIiYdaaaa!4B56!\[\int_0^\infty{E_m (x).f(x).dx} \], Mathematics of Computation 27 (1973) 861?869.
4. J. Kadlec, On the evaluation of some integrals occurring in scattering problems, Mathematics of Computation 30 (1976) 263?277.
5. K. Mitchell, Tables of the function % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamaapedabaWaaSaaaeaacqGHsislciGGSbGaai4BaiaacEgacaGG% 8bGaaGymaiabgkHiTiaadMhacaGG8baabaGaamyEaaaacaWGKbGaam% yEaaWcbaGaaGimaaqaaiaadQhaa0Gaey4kIipaaaa!4B69!\[\int_0^z {\frac{{ - \log |1 - y|}}{y}dy} \] with an account of some properties of this and related functions, The Philosophical Magazine, Series 7, 40 (1949) 351?368.