Water stress modifies canopy light environment and qualitative and quantitative yield components in two soybean varieties

Author:

Anda Angela,Simon Brigitta,Soós Gábor,Teixeira da Silva Jaime A.,Menyhárt László

Abstract

AbstractThe influence of three levels of water supply (unlimited (WW); water stress during flowering (RO); rainfed (P)) on radiation properties and yield of two soybean varieties (Sinara, Sin; Sigalia, Sig) were evaluated. Sin is considered to be tolerant to water stress. The effect of leaf area index, year, variety, and meteorological variables on evapotranspiration (ET) was analysed by hierarchical regression. This study attempted to identify how water supply affects the crop–light relationship between photosynthetically active radiation (PAR) transmission and radiation use efficiency (RUE), which were involved in qualitative and quantitative traits related to soybean production (biomass and yield attributes: seed yield, 1000-grain weight, oil and protein content). Unstandardized coefficients of air temperature (Ta) showed that a 1 °C increase in daily mean Ta induced a higher ET, on average 0.16 mm day−1. Soil moisture strongly affected sowing time. When averaged across three seasons at flowering, 97.7, 95.1 and 97.3% of incoming PAR were intercepted by the canopies of plants in WW, RO and P, respectively. The average extinction coefficient (k) and RUE pooled across both varieties were 0.42 and 1.32 g MJ PAR−1 for WW, and 0.46 and 0.98 g MJ PAR−1 for RO, respectively, compared with 0.44 and 1.15 g MJ PAR−1 for P. As expected, water treatment significantly affected all yield traits: RO decreased yield whereas WW increased yield compared to P. Practically, both varieties are suitable for cultivation under water stress during flowering but Sin showed greater yield under unlimited watering and rainfed conditions.

Funder

Hungarian University of Agriculture and Life Sciences

Publisher

Springer Science and Business Media LLC

Subject

Soil Science,Water Science and Technology,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3