Author:
Chiaia Bernardino,Marasco Giulia,Aiello Salvatore
Abstract
AbstractIn recent years, great attention has focused on the development of automated procedures for infrastructures control. Many efforts have aimed at greater speed and reliability compared to traditional methods of assessing structural conditions. The paper proposes a multi-level strategy, designed and implemented on the basis of periodic structural monitoring oriented to a cost- and time-efficient tunnel control plan. Such strategy leverages the high capacity of convolutional neural networks to identify and classify potential critical situations. In a supervised learning framework, Ground Penetrating Radar (GPR) profiles and the revealed structural phenomena have been used as input and output to train and test such networks. Image-based analysis and integrative investigations involving video-endoscopy, core drilling, jacking and pull-out testing have been exploited to define the structural conditions linked to GPR profiles and to create the database. The degree of detail and accuracy achieved in identifying a structural condition is high. As a result, this strategy appears of value to infrastructure managers who need to reduce the amount and invasiveness of testing, and thus also to reduce the time and costs associated with inspections made by highly specialized technicians.
Publisher
Springer Science and Business Media LLC
Subject
Architecture,Civil and Structural Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献