Topological charge fluctuations in the Glasma

Author:

Guerrero-Rodríguez Pablo

Abstract

Abstract The early-time evolution of the system generated in ultra-relativistic heavy ion collisions is dominated by the presence of strong color fields known as Glasma fields. These can be described following the classical approach embodied in the Color Glass Condensate effective theory, which approximates QCD in the high gluon density regime. In this framework we perform an analytical first-principles calculation of the two-point correlator of the divergence of the Chern-Simons current at proper time τ = 0+, which characterizes the early fluctuations of axial charge density in the plane transverse to the collision axis. This object plays a crucial role in the description of anomalous transport phenomena such as the Chiral Magnetic Effect. We compare our results to those obtained under the Glasma Graph approximation, which assumes gluon field correlators to obey Gaussian statistics. While this approach proves to be equivalent to the exact calculation in the limit of short transverse separations, important differences arise at larger distances, where our expression displays a remarkably slower fall-off than the Glasma Graph result (1/r 4 vs. 1/r 8 power-law decay). This discrepancy emerges from the non-linear dynamics mapping the Gaussianly-distributed color source densities onto the Glasma fields, encoded in the classical Yang-Mills equations. Our results support the conclusions reached in a previous work, where we found indications that the color screening of correlations in the transverse plane occurs at relatively large distances.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3