Author:
Caorsi Matteo,Cecotti Sergio
Abstract
Abstract
We revisit the classification of rank-1 4d
$$ \mathcal{N}=2 $$
N
=
2
QFTs in the spirit of Diophantine Geometry, viewing their special geometries as elliptic curves over the chiral ring (a Dedekind domain). The Kodaira-Néron model maps the space of non-trivial rank-1 special geometries to the well-known moduli of pairs (ε, F
∞) where E is a relatively minimal, rational elliptic surface with section, and F
∞ a fiber with additive reduction. Requiring enough Seiberg-Witten differentials yields a condition on (ε, F
∞) equivalent to the “safely irrelevant conjecture”. The Mordell-Weil group of E (with the Néron-Tate pairing) contains a canonical root system arising from (−1)-curves in special position in the Néron-Severi group. This canonical system is identified with the roots of the flavor group F: the allowed flavor groups are then read from the Oguiso-Shioda table of Mordell-Weil groups. Discrete gaugings correspond to base changes. Our results are consistent with previous work by Argyres et al.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference43 articles.
1. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
2. N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].
3. R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B 460 (1996) 299 [hep-th/9510101] [INSPIRE].
4. R.Y. Donagi, Seiberg-Witten integrable systems, Surv. Diff. Geom. 4 (1998) 83 [alg-geom/9705010] [INSPIRE].
5. P.C. Argyres, M. Crescimanno, A.D. Shapere and J.R. Wittig, Classification of N = 2 superconformal field theories with two-dimensional Coulomb branches, hep-th/0504070 [INSPIRE].
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献