Improving interpretability via regularization of neural activation sensitivity

Author:

Moshe Ofir,Fidel Gil,Bitton Ron,Shabtai Asaf

Abstract

AbstractState-of-the-art deep neural networks (DNNs) are highly effective at tackling many real-world tasks. However, their widespread adoption in mission-critical contexts is limited due to two major weaknesses - their susceptibility to adversarial attacks and their opaqueness. The former raises concerns about DNNs’ security and generalization in real-world conditions, while the latter, opaqueness, directly impacts interpretability. The lack of interpretability diminishes user trust as it is challenging to have confidence in a model’s decision when its reasoning is not aligned with human perspectives. In this research, we (1) examine the effect of adversarial robustness on interpretability, and (2) present a novel approach for improving DNNs’ interpretability that is based on the regularization of neural activation sensitivity. We evaluate the interpretability of models trained using our method to that of standard models and models trained using state-of-the-art adversarial robustness techniques. Our results show that adversarially robust models are superior to standard models, and that models trained using our proposed method are even better than adversarially robust models in terms of interpretability.(Code provided in supplementary material.)

Funder

Ben-Gurion University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3