Publisher
Springer Science and Business Media LLC
Reference90 articles.
1. Abdelwahab, M., & Busso, C. (2019). Active learning for speech emotion recognition using deep neural network. In 2019 8th International conference on affective computing and intelligent interaction (ACII) (pp. 1–7). IEEE.
2. Aggarwal, U., Popescu, A., & Hudelot, C. (2020). Active learning for imbalanced datasets. In Proceedings of the IEEE/CVF winter conference on applications of computer vision (pp. 1428–1437).
3. Akpatsa, S. K., Li, Xiaoyu, L., Hang, & Obeng, V.-H. K. S. (2022). Evaluating public sentiment of covid-19 vaccine tweets using machine learning techniques. Informatica 46(1).
4. Al-Hajri, S., Al-Kuwari, M. G., & Al-Thani, M. H. (2021). The covid-19 vaccine social media challenge: Strategies for addressing vaccine hesitancy in the age of misinformation. Vaccine, 39(29), 3859–3861.
5. Alam, K. N., Khan, M. S., Dhruba, A. R., Khan, M. M., Al-Amri, J. F., Masud, M, & Rawashdeh, M. (2021). Deep learning-based sentiment analysis of covid-19 vaccination responses from twitter data. Computational and Mathematical Methods in Medicine, 2021.