Smoothing policies and safe policy gradients

Author:

Papini MatteoORCID,Pirotta Matteo,Restelli Marcello

Abstract

AbstractPolicy gradient (PG) algorithms are among the best candidates for the much-anticipated applications of reinforcement learning to real-world control tasks, such as robotics. However, the trial-and-error nature of these methods poses safety issues whenever the learning process itself must be performed on a physical system or involves any form of human-computer interaction. In this paper, we address a specific safety formulation, where both goals and dangers are encoded in a scalar reward signal and the learning agent is constrained to never worsen its performance, measured as the expected sum of rewards. By studying actor-only PG from a stochastic optimization perspective, we establish improvement guarantees for a wide class of parametric policies, generalizing existing results on Gaussian policies. This, together with novel upper bounds on the variance of PG estimators, allows us to identify meta-parameter schedules that guarantee monotonic improvement with high probability. The two key meta-parameters are the step size of the parameter updates and the batch size of the gradient estimates. Through a joint, adaptive selection of these meta-parameters, we obtain a PG algorithm with monotonic improvement guarantees.

Funder

Universitat Pompeu Fabra

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference92 articles.

1. Abbeel, P., Coates, A., & Ng, A. Y. (2010). Autonomous helicopter aerobatics through apprenticeship learning. The International Journal of Robotics Research, 29(13), 1608–1639.

2. Achiam, J., Held, D., Tamar, A., & Abbeel, P. (2017). Constrained policy optimization. ICML, 70, 22–31. PMLR.

3. Agarwal, A., Kakade, S. M., Lee, J. D., & Mahajan, G. (2020). Optimality and approximation with policy gradient methods in Markov decision processes. COLT, 125, 64–66. PMLR.

4. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mane, D. (2016). Concrete problems in ai safety. arXiv preprint arXiv:1606.06565 .

5. Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements that can solve dicult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, 13(5), 834–846.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sample complexity of variance-reduced policy gradient: weaker assumptions and lower bounds;Machine Learning;2024-06-27

2. Byzantine Resilient Federated REINFORCE (GM-FedREINFORCE);2023 International Conference on Machine Learning and Applications (ICMLA);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3