Hyperparameter importance and optimization of quantum neural networks across small datasets

Author:

Moussa CharlesORCID,Patel Yash J.,Dunjko Vedran,Bäck Thomas,van Rijn Jan N.

Abstract

AbstractAs restricted quantum computers become available, research focuses on finding meaningful applications. For example, in quantum machine learning, a special type of quantum circuit called a quantum neural network is one of the most investigated approaches. However, we know little about suitable circuit architectures or important model hyperparameters for a given task. In this work, we apply the functional ANOVA framework to the quantum neural network architectures to analyze which of the quantum machine learning hyperparameters are most influential for their predictive performance. We restrict our study to 7 open-source datasets from the OpenML-CC18 classification benchmark, which are small enough for simulations on quantum hardware with fewer than 20 qubits. Using this framework, three main levels of importance were identified, confirming expected patterns and revealing new insights. For instance, the learning rate is identified as the most important hyperparameter on all datasets, whereas the particular choice of entangling gates used is found to be the least important on all except for one dataset. In addition to identifying the relevant hyperparameters, for each of them, we also learned data-driven priors based on values that perform well on previously seen datasets, which can then be used to steer hyperparameter optimization processes. We utilize these priors in the hyperparameter optimization method hyperband and show that these improve performance against uniform sampling across all datasets by, on average, $$0.53 \%$$ 0.53 % , up to $$6.11 \%$$ 6.11 % , in cross-validation accuracy. We also demonstrate that such improvements hold on average regardless of the configuration hyperband is run with. Our work introduces new methodologies for studying quantum machine learning models toward quantum model selection in practice. All research code is made publicly available.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AutoRL-Sim: Automated Reinforcement Learning Simulator for Combinatorial Optimization Problems;Modelling;2024-08-26

2. SoK: quantum computing methods for machine learning optimization;Quantum Machine Intelligence;2024-07-24

3. Automated machine learning: past, present and future;Artificial Intelligence Review;2024-04-18

4. Hyperparameter Tuning of Identity Block Uses an Imbalance Dataset with Hyperband Method;2024 18th International Conference on Ubiquitous Information Management and Communication (IMCOM);2024-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3