Abstract
AbstractExtreme Multilabel Text Classification (XMTC) is a text classification problem in which, (i) the output space is extremely large, (ii) each data point may have multiple positive labels, and (iii) the data follows a strongly imbalanced distribution. With applications in recommendation systems and automatic tagging of web-scale documents, the research on XMTC has been focused on improving prediction accuracy and dealing with imbalanced data. However, the robustness of deep learning based XMTC models against adversarial examples has been largely underexplored. In this paper, we investigate the behaviour of XMTC models under adversarial attacks. To this end, first, we define adversarial attacks in multilabel text classification problems. We categorize attacking multilabel text classifiers as (a) positive-to-negative, where the target positive label should fall out of top-k predicted labels, and (b) negative-to-positive, where the target negative label should be among the top-k predicted labels. Then, by experiments on APLC-XLNet and AttentionXML, we show that XMTC models are highly vulnerable to positive-to-negative attacks but more robust to negative-to-positive ones. Furthermore, our experiments show that the success rate of positive-to-negative adversarial attacks has an imbalanced distribution. More precisely, tail classes are highly vulnerable to adversarial attacks for which an attacker can generate adversarial samples with high similarity to the actual data-points. To overcome this problem, we explore the effect of rebalanced loss functions in XMTC where not only do they increase accuracy on tail classes, but they also improve the robustness of these classes against adversarial attacks. The code for our experiments is available at https://github.com/xmc-aalto/adv-xmtc.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Reference41 articles.
1. Agrawal, R., Gupta, A., Prabhu, Y., & Varma, M. (2013). Multi-label learning with millions of labels: Recommending advertiser bid phrases for web pages. In Proceedings of the 22nd international conference on World Wide Web, pp. 13–24.
2. Babbar, R., Metzig, C., Partalas, I., Gaussier, E., & Amini, M. R. (2014). On power law distributions in large-scale taxonomies. ACM SIGKDD Explorations Newsletter, 16(1), 47–56.
3. Babbar, R., & Schölkopf, B. (2017). Dismec: Distributed sparse machines for extreme multi-label classification. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 721–729.
4. Babbar, R., & Schölkopf, B. (2019). Data scarcity, robustness and extreme multi-label classification. Machine Learning, 108(8), 1329–1351.
5. Bhatia, K., Dahiya, K., Jain, H., Kar, P., Mittal, A., Prabhu, Y., & Varma, M. (2016). The extreme classification repository: Multi-label datasets and code.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献