Partially Hidden Markov Chain Multivariate Linear Autoregressive model: inference and forecasting—application to machine health prognostics

Author:

Dama FatoumataORCID,Sinoquet Christine

Abstract

AbstractTime series subject to regime shifts have attracted much interest in domains such as econometry, finance or meteorology. For discrete-valued regimes, models such as the popular Hidden Markov Chain (HMC) describe time series whose state process is unknown at all time-steps. Sometimes, time series are annotated. Thus, another category of models handles the case with regimes observed at all time-steps. We present a novel model which addresses the intermediate case: (i) state processes associated to such time series are modelled by Partially Hidden Markov Chains (PHMCs); (ii) a multivariate linear autoregressive (MLAR) model drives the dynamics of the time series, within each regime. We describe a variant of the expectation maximization (EM) algorithm devoted to PHMC-MLAR model learning. We propose a hidden state inference procedure and a forecasting function adapted to the semi-supervised framework. We first assess inference and prediction performances, and analyze EM convergence times for PHMC-MLAR, using simulated data. We show the benefits of using partially observed states as well as a fully labelled scheme with unreliable labels, to decrease EM convergence times. We highlight the robustness of PHMC-MLAR to labelling errors in inference and prediction tasks. Finally, using turbofan engine data from a NASA repository, we show that PHMC-MLAR outperforms or largely outperforms other models: PHMC and MSAR (Markov Switching AutoRegressive model) for the feature prediction task, PHMC and five out of six recent state-of-the-art methods for the prediction of machine useful remaining life.

Funder

Ministère de l’Enseignement Supérieur et de la Recherche

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning DFT-Based Approach to Predict the Electrical Properties of Tin Oxide Materials;The 10th International Electronic Conference on Sensors and Applications;2023-11-15

2. Text Segmentation via Hierarchical Document Attention Model;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3