Neural calibration of hidden inhomogeneous Markov chains: information decompression in life insurance

Author:

Kiermayer MarkORCID,Weiß Christian

Abstract

AbstractMarkov chains play a key role in a vast number of areas, including life insurance mathematics. Standard actuarial quantities as the premium value can be interpreted as compressed, lossy information about the underlying Markov process. We introduce a method to reconstruct the underlying Markov chain given collective information of a portfolio of contracts. Our neural architecture characterizes the process in a highly explainable way by explicitly providing one-step transition probabilities. Further, we provide an intrinsic, economic model validation to inspect the quality of the information decompression. Lastly, our methodology is successfully tested for a realistic data set of German term life insurance contracts.

Funder

Ministeriums für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Hochschule Ruhr West

Publisher

Springer Science and Business Media LLC

Reference56 articles.

1. Aleandri, M. (2017). Modeling dynamic policyholder behaviour through machine learning techniques. Submitted to Scuola de Scienze Statistiche.

2. Allen-Zhu, Z., Li, Y., & Liang, Y. (2019). Learning and generalization in overparameterized neural networks, going beyond two layers. In Conference on neural information processing systems.

3. Arora, S., Cohen, N., & Hazan, E. (2018). On the optimization of deep networks: Implicit acceleration by overparameterization. In Proceedings of the 35th international conference on machine learning (Vol. 80).

4. Asanjarani, A., Liquet, B., & Nazarathy, Y. (2021). Estimation of semi-Markov multi-state models: A comparison of the sojourn times and transition intensities approaches. The International Journal of Biostatistics. https://doi.org/10.1515/ijb-2020-0083

5. Awiszus, M., & Rosenhahn, B. (2018). Markov chain neural networks. In 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (pp. 2261–22617).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3