Improving fairness generalization through a sample-robust optimization method

Author:

Ferry JulienORCID,Aïvodji Ulrich,Gambs Sébastien,Huguet Marie-José,Siala Mohamed

Funder

LabEx CIMI

Canada Research Chairs

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference52 articles.

1. Agarwal, A., Beygelzimer, A., Dudik, M., et al. (2018). A reductions approach to fair classification. In Proceedings of the 35th International Conference on Machine Learning, Proceedings of Machine Learning Research (Vol. 80, pp 60–69). PMLR. https://proceedings.mlr.press/v80/agarwal18a.html

2. Aïvodji, U., Ferry, J., Gambs, S., et al. (2019). Learning fair rule lists. arXiv preprint arXiv:1909.03977.

3. Aïvodji, U., Ferry, J., Gambs, S., et al. (2021). Faircorels, an open-source library for learning fair rule lists. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management. Association for Computing Machinery, New York, NY, USA, CIKM ’21 (pp. 4665–4669). https://doi.org/10.1145/3459637.3481965.

4. Angelino, E., Larus-Stone, N., Alabi, D., et al. (2017). Learning certifiably optimal rule lists. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, KDD ’17 (pp. 35–44). https://doi.org/10.1145/3097983.3098047.

5. Angelino, E., Larus-Stone, N., Alabi, D., et al. (2018). Learning certifiably optimal rule lists for categorical data. Journal of Machine Learning Research, 18(234), 1–78.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fairness as a Robust Utilitarianism;Production and Operations Management;2024-07-25

2. Interaction Difference Hypothesis Test for Prediction Models;Machine Learning and Knowledge Extraction;2024-06-14

3. D-hacking;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

4. Fairness in Machine Learning: A Survey;ACM Computing Surveys;2023-08-23

5. What-is and How-to for Fairness in Machine Learning: A Survey, Reflection, and Perspective;ACM Computing Surveys;2023-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3