1. Ahn, S., Korattikara, A., Liu, N., Rajan, S., & Welling, M. (2015). Large-scale distributed Bayesian matrix factorization using stochastic gradient MCMC. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '15), 9–18.
2. Bergstra, J. S., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter optimization. In Advances in Neural Information Processing Systems, 24, 2546–2554.
3. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.
4. Brosse, N., Durmus, A., Moulines, É., & Pereyra, M. (2017). Sampling from a log-concave distribution with compact support with proximal Langevin Monte Carlo. In Proceedings of the 2017 Conference on Learning Theory, 319–342.
5. Bubeck, S., Eldan, R., & Lehec, J. (2015). Finite-time analysis of projected Langevin Monte Carlo. In Advances in Neural Information Processing Systems, 28, 1243–1251.