1. Altinisik, E., Sajjad, H., Sencar, H. T., Messaoud, S., & Chawla, S. (2022). Impact of adversarial training on robustness and generalizability of language models. arXiv:2211.05523.
2. Balaji, Y., Goldstein, T., & Hoffman, J. (2019). Instance adaptive adversarial training: Improved accuracy tradeoffs in neural nets. arXiv:1910.08051.
3. Chen, T., Zhang, Z., Liu, S., Chang, S., & Wang, Z. (2021). Robust overfitting may be mitigated by properly learned smoothening. In ICLR.
4. Cheng, M., Lei, Q., Chen, P., Dhillon, I. S., & Hsieh, C. (2022). CAT: customized adversarial training for improved robustness. In IJCAI (pp. 673–679).
5. Croce, F., Andriushchenko, M., Sehwag, V., & Debenedetti, E., Flammarion, N., Chiang, M., Mittal, P., & Hein, M. (2021). Robustbench: A standardized adversarial robustness benchmark. In NeurIPS.