A3T: accuracy aware adversarial training

Author:

Altinisik EnesORCID,Messaoud Safa,Sencar Husrev Taha,Chawla Sanjay

Abstract

AbstractAdversarial training has been empirically shown to be more prone to overfitting than standard training. The exact underlying reasons are still not fully understood. In this paper, we identify one cause of overfitting related to current practices of generating adversarial examples from misclassified samples. We show that, following current practice, adversarial examples from misclassified samples results in harder-to-classify samples than the original ones. This leads to a complex adjustment of the decision boundary during training and hence overfitting. To mitigate this issue, we propose A3T, an accuracy aware AT method that generate adversarial example differently for misclassified and correctly classified samples. We show that our approach achieves better generalization while maintaining comparable robustness to state-of-the-art AT methods on a wide range of computer vision, natural language processing, and tabular tasks.

Funder

QNRF

Hamad bin Khalifa University

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference42 articles.

1. Altinisik, E., Sajjad, H., Sencar, H. T., Messaoud, S., & Chawla, S. (2022). Impact of adversarial training on robustness and generalizability of language models. arXiv:2211.05523.

2. Balaji, Y., Goldstein, T., & Hoffman, J. (2019). Instance adaptive adversarial training: Improved accuracy tradeoffs in neural nets. arXiv:1910.08051.

3. Chen, T., Zhang, Z., Liu, S., Chang, S., & Wang, Z. (2021). Robust overfitting may be mitigated by properly learned smoothening. In ICLR.

4. Cheng, M., Lei, Q., Chen, P., Dhillon, I. S., & Hsieh, C. (2022). CAT: customized adversarial training for improved robustness. In IJCAI (pp. 673–679).

5. Croce, F., Andriushchenko, M., Sehwag, V., & Debenedetti, E., Flammarion, N., Chiang, M., Mittal, P., & Hein, M. (2021). Robustbench: A standardized adversarial robustness benchmark. In NeurIPS.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3