Flight plan for the future: floatplane pilots and researchers team up to predict invasive species dispersal in Alaska

Author:

Schwoerer TobiasORCID,Dial Roman J.ORCID,Little Joseph M.ORCID,Martin Aaron E.,Morton John M.,Schmidt Jennifer I.ORCID,Ward Eric J.ORCID

Abstract

AbstractAircraft can transport aquatic invasive species (AIS) from urban sources to remote waterbodies, yet little is known about this long-distance pathway. In North America and especially Alaska, aircraft with landing gear for water called floatplanes are used for recreation access to remote, often road-less wilderness destinations. Human-mediated dispersal of AIS is particularly concerning for the conservation of pristine wildlands, yet resource managers are often challenged by limited monitoring and response capacity given the vast areas they manage. We collected pathway data through a survey with floatplane pilots and used a Bayesian hierarchical model to inform early detection in a data-limited situation. The study was motivated by Alaska’s first known AIS, Elodea spp. (Elodea) and its floatplane-related dispersal. For 682 identified floatplane destinations, a Bayesian hierarchical model predicts the chance of flights originating from AIS source locations in freshwater and estimates the expected number of flights from these sources. Model predictions show the potential for broad spread across remote regions currently not known to have Elodea and informed monitoring and early detection efforts. Our result underlines the small window of opportunity for Arctic conservation strategies targeting an AIS free Arctic. We recommend management that focuses on long-distance connectivity, keeping urban sources free of AIS. We discuss applicability of the approach for other data-limited situations supporting data-informed AIS management responses.

Funder

Alaska Sea Grant, University of Alaska Fairbanks

Alaska Sustainable Salmon Fund

U.S. Fish and Wildlife Service

Cook Inlet Aquaculture

Alaska Department of Natural Resources

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3