Community assembly among potential invasive plants in Antarctica shaped by life history characteristics and climate warming

Author:

Bokhorst S.ORCID,Convey P.,Aerts R.

Abstract

AbstractSpecies arrival sequence in new habitats impacts plant community development. This ‘priority-effect’ is documented, but mechanisms by which early arriving plants dominate future communities are less clear, complicating our ability to predict community assembly under future climate warming and assess invasive species threats. This is particularly important for ecosystems that are vulnerable to invasive species, such as those of the Antarctic Peninsula. To test how phenological differences and arrival order affect community composition of invasive plants, we simulated maritime Antarctic climate conditions, and a warming scenario. We established monocultures of six species potentially invasive to the Antarctic Peninsula (three forbs and three grasses), which exhibit a range of germination times ranging from 22 and 68 d, and a mixed community of all species. Before entering a simulated winter, half of each monoculture (n = 10) received the full seed mixture while the other half received seeds of their respective starting species. During the following simulated growing season, we quantified if the community composition was influenced by arrival order and whether species germination and growth responses differed from their monocultures and starting species. Community compositions differed across all starting communities and were typically dominated by the starting species. Phenological differences influenced individual and total biomass and plant height, but faster germinating species did not consistently dominate the final plant community. Forbs and grasses negatively impacted each other’s biomass. Warming enhanced priority effects (more negative or positive). Phenological priority has ecologically relevant influences on community assembly, but its effect on plant growth is context dependent in terms of species and temperature conditions. In particular, our data suggest that phenological priority influences plant biomass and size while niche pre-emption affects seed germination. Future trajectories of polar terrestrial plant communities will depend on the arrival order of colonizing non-native plants and their germination rates.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3