Citizen science reveals current distribution, predicted habitat suitability and resource requirements of the introduced African Carder Bee Pseudoanthidium (Immanthidium) repetitum in Australia

Author:

Dart Keeley,Latty TanyaORCID,Greenville Aaron

Abstract

AbstractThe introduction of non-native bee species is a major driver of ecosystem change resulting in the spread of non-native weeds, alterations to plant-pollinator interactions and competition with native species for food and nesting resources. Our lack of ecological information for many non-native organisms hinders our ability to understand the impacts of species introductions. This is often compounded by the Wallacean Shortfall—a lack of adequate knowledge of a species’ distribution in geographic space. In Australia, the African carder bee (Pseudoanthidium (Immanthidium) repetitum) was first observed in 2000 and has since become one of the most common bees in some regions. Despite its rapid population increase and range expansion, little is known about the ecology or distribution of P. repetitum. In this study, we determine the flower preferences, current distribution and predicted areas at risk of future invasion of P. repetitum using opportunistic data collected from citizen science websites, social media and museum records. We found that the current distribution of P. repetitum in Australia encompasses approximately 332,000 km2 concentrated along the eastern coast. We found considerable suitable habitat outside the current distribution including biodiversity hotspots and world heritage listed natural areas. Pseudoanthidium repetitum foraged on a wide range of plants from many families and can thus be classified as a generalist forager (polylectic). Our results suggest that P. repetitum is well suited for continued expansion in coastal Australia. Our results demonstrate the effective application of opportunistic data in overcoming knowledge gaps in species ecology and modelling of introduced species distribution.

Funder

University of Sydney

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3