Abstract
AbstractWe show that every compact complex analytic space endowed with a fine logarithmic structure and every morphism between such spaces admit a semi-universal deformation. These results generalize the analogous results in complex analytic geometry first independently proved by A. Douady and H. Grauert in the ’70. We follow Douady’s two steps process approach consisting of an infinite-dimensional construction of the deformation space followed by a finite-dimensional reduction.
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Caputo, R.: Existence of a versal deformation for compact complex analytic spaces endowed with logarithmic structure. PhD thesis, Universität Hamburg (2019). http://ediss.sub.uni-hamburg.de/volltexte/2020/10273
2. Douady, A. Le problème des modules pour les variétés analytiques complexes (d’après Masatake Ku:ranishi). In: Séminaire Bourbaki, vol. 9. Society of Mathematics, Paris, pp. Exp. No. 277, 7–13 (1964)
3. Douady, A.: Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné. Ann. Inst. Fourier (Grenoble) 16, fasc. 1, pp. 1–95 (1966)
4. Douady, A.: Le problème des modules locaux pour les espaces $${ C}$$-analytiques compacts. Ann. Sci. École Norm. Sup. 7(4), 569–602 (1974)
5. Felten, S.: Log smooth deformation theory via gerstenhaber algebras. Manuscripta Mathematica 167(01), 1–35 (2022)