Relative tilting theory in abelian categories I: Auslander–Buchweitz–Reiten approximations theory in subcategories and cotorsion-like pairs

Author:

Argudín-Monroy Alejandro,Mendoza Hernández OctavioORCID

Abstract

AbstractIn this paper, we introduce a special kind of relative (co)resolutions associated with a pair of classes of objects in an abelian category $$\mathcal {C}.$$ C . We will see that, by studying this relative (co)resolutions, we get a possible generalization of a part of the Auslander–Buchweitz approximation theory that is useful for developing n-$$\mathcal {X}$$ X -tilting theory in Argudin Monroy and Mendoza Hernández (relative tilting theory in abelian categories II: n-$$\mathcal {X}$$ X tilting theory. arXiv:2112.14873, 2021). With this goal, new concepts as $$\mathcal {X}$$ X -complete and $$\mathcal {X}$$ X -hereditary pairs are introduced as a generalization of complete and hereditary cotorsion pairs. These pairs appear in a natural way in the study of the category of representations of a quiver in an abelian category (Argudin Monroy and Mendoza Hernández in categories of quiver representations and relative cotorsion pairs. arXiv:2311.12774v1, 2023). Our main results will include an existence theorem for relative approximations, among other results related with closure properties of relative (co)resolution classes and relative homological dimensions which are essential in the development of n-$$\mathcal {X}$$ X -tilting theory in Argudin Monroy and Mendoza Hernández (2021).

Funder

PAPIIT-UNAM

DGAPA-UNAM

Publisher

Springer Science and Business Media LLC

Reference26 articles.

1. Angeleri Hügel, L., Happel, D., Krause, H. (eds.): Handbook of Tilting Theory. London Math. Soc. Lecture Note Ser. Cambridge University Press, Cambridge (2007)

2. Angeleri Hügel, L., Coelho, F.U.: Infinitely generated tilting modules of finite projective dimension. Forum Math. 13(2), 239–250 (2001)

3. Argudín Monroy, A.: The yoneda ext and arbitrary coproducts in abelian categories. Glasg. Math. J. 64(2), 277–291 (2022)

4. Argudin Monroy, A., Hernández, O.M.: Relative tilting theory in abelian categories $${\rm II}:$$$$n$$-$$\cal{X}$$ tilting theory (2021). arXiv:2112.14873

5. Argudin Monroy, A., Hernández, O.M.: Categories of quiver representations and relative cotorsion pairs (2023). arXiv:2311.12774v1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3