Instantaneous flame front identification by Mie scattering vs. OH PLIF in low turbulence Bunsen flame

Author:

Zheng YutaoORCID,Weller Lee,Hochgreb Simone

Abstract

Abstract Simultaneous OH-PLIF and Mie scatter imaging were used to investigate turbulent premixed flame edge detection under a range of turbulence characteristics on a stabilised piloted Bunsen burner. A 527 nm wavelength laser beam is used to generate a Mie scattering sheet at 500 Hz, and a 283 nm wavelength laser sheet is created using 355 nm wavelength laser to pump an optical parametric oscillator to induce florescence from OH radicals at 5 Hz. A phase-locking technique is applied to synchronize and lock the two laser systems. The number density method has been used to detect flame edges in Mie scattering images, and three algorithms were applied to OH-PLIF images as a reference. A comparison of the methods and different parameter setting is made by using the metrics of location difference, flame surface density and curvature of flame edges. The processed data show that once a well-tuned window size is determined by applying the number density method, averaged spatial differences between Mie scattering images and OH-PLIF images are of the order of or smaller than the laminar flame thickness, demonstrating that under these conditions, high frequency Mie scatter measurements can be used as well as OH-PLIF images to define the flame edge at that spatial resolution. The positive result confirms that double-frame Mie scattering allows the measurement of high frequency conditional velocity distributions and flame properties simultaneously using solely Mie scattering, provided that the particle density is suitably designed to be around 16 px$$^2$$ 2 per particle. Graphic Abstract

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3