Hamiltonian formulation of general relativity and post-Newtonian dynamics of compact binaries

Author:

Schäfer GerhardORCID,Jaranowski PiotrORCID

Abstract

AbstractHamiltonian formalisms provide powerful tools for the computation of approximate analytic solutions of the Einstein field equations. The post-Newtonian computations of the explicit analytic dynamics and motion of compact binaries are discussed within the most often applied Arnowitt–Deser–Misner formalism. The obtention of autonomous Hamiltonians is achieved by the transition to Routhians. Order reduction of higher derivative Hamiltonians results in standard Hamiltonians. Tetrad representation of general relativity is introduced for the tackling of compact binaries with spinning components. Compact objects are modeled by use of Dirac delta functions and their derivatives. Consistency is achieved through transition to d-dimensional space and application of dimensional regularization. At the fourth post-Newtonian level, tail contributions to the binding energy show up for the first time. The conservative dynamics of binary systems finds explicit presentation and discussion through the fifth post-Newtonian order for spinless masses. For masses with spin Hamiltonians are known through (next-to)$$^3$$ 3 -leading-order spin-orbit and spin-spin couplings as well as through next-to-leading order cubic and quartic in spin interactions. Parts of those are given explicitly. Tidal-interaction Hamiltonians are considered through (next-to)$$^2$$ 2 -leading post-Newtonian order. The radiation reaction dynamics is presented explicitly through the third-and-half post-Newtonian order for spinless objects, and, for spinning bodies, to leading-order in the spin-orbit and spin1-spin2 couplings. The most important historical issues get pointed out.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Post-Newtonian theory for gravitational waves;Living Reviews in Relativity;2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3