Author:
Li Xin,Tian Yu,Zhang Hongbao
Abstract
Abstract
Within the simplest holographic superfluid model and without any ingredient put by hand, it is shown that vortices can be generated when the angular velocity of rotating superfluids exceeds certain critical values, which can be precisely determined by linear perturbation analyses (quasi-normal modes of the bulk AdS black brane). These vortices appear at the edge of the superfluid system first, and then automatically move into the bulk of the system, where they are eventually stabilized into certain vortex lattices. For the case of 18 vortices generated, we find (at least) five different patterns of the final lattices formed due to different initial perturbations, which can be compared to the known result for such lattices in weakly coupled Bose-Einstein condensates from free energy analyses.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献