Sleeve gastrectomy links the attenuation of diabetic kidney disease to the inhibition of renal tubular ferroptosis through down-regulating TGF-β1/Smad3 signaling pathway

Author:

Liu C.,Zhong M.,Jin X.,Zhu J.,Cheng Y.,Li L.,Xu Q.,Liu Q.,Ding H.,Zhang G.ORCID

Abstract

Abstract Purpose To investigate how sleeve gastrectomy (SG), a typical operation of bariatric surgery, attenuated symptom, and progression of diabetic kidney disease (DKD). Methods DKD model was induced by high-fat diet (HFD) combined with streptozocin in Wistar rats. SG was performed, and the group subjected to sham surgery served as control. The animals were euthanized 12 weeks after surgery, followed by sample collection for the subsequent experiment. The HK-2, a renal proximal tubular epithelial cell line derived from human, was utilized to investigate the potential mechanisms. Results SG improved metabolic parameters and glucose homeostasis, and could alleviate DKD in terms of renal function indices as well as histological and morphological structures in DM rats, accompanied with a significant reduction in renal tubular injury. Compared with sham group, SG reduced the renal tubular ferroptosis. To further clarify the mechanism involved, in vitro experiments were performed. In the presence of high glucose, renal tubular TGF-β1 secretion was significantly increased in HK-2 cell line, which led to activation of ferroptosis through TGF-β1/Smad3 signaling pathway. Inhibition of TGF-β1 receptor and phosphorylation of Smad3 significantly ameliorated TGF-β1-mediated ferroptosis. In vivo experiments also found that SG improved the hyperglycemic environment, reduced renal TGF-β1 concentrations, and down-regulated the TGF-β1/Smad3 signaling pathway. Conclusions With the capacity to lower the glucose, SG could attenuate the ferroptosis by inhibiting TGF-β1/Smad3 signaling pathway in DKD rats, and eventually attenuated DKD.

Funder

National Natural Science Foundation of China

Major Basic Research Project of Natural Science Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3