Abstract
AbstractThe average treatment effect is used to evaluate effects of interventions in a population. Under certain causal assumptions, such an effect may be estimated from observational data using the g-computation technique. The asymptotic properties of this estimator appears not to be well-known and hence bootstrapping has become the preferred method for estimating its variance. Bootstrapping is, however, not an optimal choice for multiple reasons; it is a slow procedure and, if based on too few bootstrap samples, results in a highly variable estimator of the variance. In this paper, we consider estimators of potential outcome means and average treatment effects using g-computation. We consider these parameters for the entire population but also in subgroups, for example, the average treatment effect among the treated. We derive their asymptotic distributions in a general framework. An estimator of the asymptotic variance is proposed and shown to be consistent when g-computation is used in conjunction with the M-estimation technique. The proposed estimator is shown to be superior to the bootstrap technique in a simulation study. Robustness against model misspecification is also demonstrated by means of simulations.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献