Author:
Khan Muhammad Imran,Qureshi Humera,Bae Suk Joo,Shah Adil,Ahmad Naveed,Ahmad Sadique,Asim Muhammad
Abstract
Abstract
Background
Malaria remains a formidable worldwide health challenge, with approximately half of the global population at high risk of catching the infection. This research study aimed to address the pressing public health issue of malaria’s escalating prevalence in Khyber Pakhtunkhwa (KP) province, Pakistan, and endeavors to estimate the trend for the future growth of the infection.
Methods
The data were collected from the IDSRS of KP, covering a period of 5 years from 2018 to 2022. We proposed a hybrid model that integrated Prophet and TBATS methods, allowing us to efficiently capture the complications of the malaria data and improve forecasting accuracy. To ensure an inclusive assessment, we compared the prediction performance of the proposed hybrid model with other widely used time series models, such as ARIMA, ETS, and ANN. The models were developed through R-statistical software (version 4.2.2).
Results
For the prediction of malaria incidence, the suggested hybrid model (Prophet and TBATS) surpassed commonly used time series approaches (ARIMA, ETS, and ANN). Hybrid model assessment metrics portrayed higher accuracy and reliability with lower MAE (8913.9), RMSE (3850.2), and MAPE (0.301) values. According to our forecasts, malaria infections were predicted to spread around 99,301 by December 2023.
Conclusions
We found the hybrid model (Prophet and TBATS) outperformed common time series approaches for forecasting malaria. By December 2023, KP’s malaria incidence is expected to be around 99,301, making future incidence forecasts important. Policymakers will be able to use these findings to curb disease and implement efficient policies for malaria control.
Publisher
Springer Science and Business Media LLC