Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Reference18 articles.
1. Assouad, P.: Plongements lipschitziens dans $${ R}^{n}$$. Bull. Soc. Math. France 111(4), 429–448 (1983)
2. Cheeger, J., Kleiner, B.: Realization of metric spaces as inverse limits, and bilipschitz embedding in $$L_1$$. Geom. Funct. Anal. 23(1), 96–133 (2013)
3. David, G., Snipes, M.: A non-probabilistic proof of the Assouad embedding theorem with bounds on the dimension. Anal. Geom. Metr. Spaces 1, 36–41 (2013)
4. David, G.C.: On the Lipschitz dimension of Cheeger–Kleiner. Fund. Math. 253(3), 317–358 (2021)
5. Freeman, D., Gartland, C.: Lipschitz functions on quasiconformal trees. arXiv https://arxiv.org/abs/2204.05464 (2022)