Abstract
AbstractAny 6-dimensional strict nearly Kähler manifold is Einstein with positive scalar curvature. We compute the coindex of the metric with respect to the Einstein–Hilbert functional on each of the compact homogeneous examples. Moreover, we show that the infinitesimal Einstein deformations on $$F_{1,2}={\text {SU}}(3)/T^2$$
F
1
,
2
=
SU
(
3
)
/
T
2
are not integrable into a curve of Einstein metrics.
Publisher
Springer Science and Business Media LLC
Reference23 articles.
1. Besse, A.L.: Einstein Manifolds, Classics in Mathematics. Springer, Berlin (1987)
2. Batat, W., Hall, S.J., Murphy, T., Waldron, J.: Rigidity of $$SU_n$$-type symmetric spaces (2021). arXiv:2102.07168v2 (preprint)
3. Butruille, J.-B.: Classification des variétés approximativement kähleriennes homogènes. Ann. Glob. Anal. Geom. 27, 201–225 (2005)
4. Butruille, J.-B.: Twistors and 3-symmetric spaces. Proc. Lond. Math. Soc. 96, 738–766 (2008)
5. Foscolo, L.: Deformation theory of nearly Kähler manifolds. J. Lond. Math. Soc. 95, 586–612 (2017)