Abstract
AbstractWe classify all homogeneous Kobayashi-hyperbolic manifolds of dimension $$n \ge 2$$
n
≥
2
whose group of holomorphic automorphisms has dimension either $$n^2 - 7$$
n
2
-
7
or $$n^2 - 8.$$
n
2
-
8
.
This paper continues the work of A. Isaev, who classified all such manifolds with automorphism group dimension $$n^2 - 6$$
n
2
-
6
and greater.
Funder
The University of Adelaide
Publisher
Springer Science and Business Media LLC
Reference18 articles.
1. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
2. Dorfmeister, J.: Homogeneous Siegel domains. Nagoya Math. J. 86, 39–83 (1982)
3. Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, (1994). Oxford Science Publications
4. Graczyk, P., Ishi, H.: Riesz measures and Wishart laws associated to quadratic maps. J. Math. Soc. Jpn. 66(1), 317–348 (2014)
5. Herrington, E.: Highly symmetric homogeneous Kobayashi-hyperbolic manifolds. PhD thesis, University of Adelaide. https://hdl.handle.net/2440/133439 (2021)