Abstract
AbstractFor any positive integer l, let $$b_l(n)$$
b
l
(
n
)
and $$B_l(n)$$
B
l
(
n
)
represent the number of l-regular partitions and l-regular bipartitions respectively. By employing q-identities, we prove new congruences for $$b_{11}(n)$$
b
11
(
n
)
, $$b_{19}(n)$$
b
19
(
n
)
, $$b_{55}(n)$$
b
55
(
n
)
, $$B_{11}(n)$$
B
11
(
n
)
and $$B_{13}(n)$$
B
13
(
n
)
.
Funder
Manipal Academy of Higher Education, Manipal
Publisher
Springer Science and Business Media LLC
Reference18 articles.
1. Ahmed, Z., Baruah, N.D.: New congruences for $$l$$-regular partitions for $$l \in \{5, 6, 7, 49\}$$. Ramanujan J. 40, 649–668 (2016)
2. Andrews, G.E., Hirschhorn, M.D., Sellers, J.A.: Arithmatic properties of partitions with even parts distinct. Ramanujan J. 23, 169–181 (2010)
3. Baruah, N.D., Das, K.: Parity results for 7-regular and 23-regular partitions. Int. J. Number Theory 11, 2221–2238 (2015)
4. Berndt, B.C.: Ramanujan’s Notebooks part III. Springer, New York (1991)
5. Calkin, N., Drake, N., James, K., Law, S., Lee, P., Penniston, D., Radder, J.: Divisibility properties of the 5-regular and 13-regular partition functions. Integers 8, A60 (2008)