Abstract
AbstractThe paper deals with the following double phase problem $$\begin{aligned} \begin{aligned}&-m \left[ \int _\Omega \left( \frac{|\nabla u|^p}{p} + a(x) \frac{|\nabla u|^q}{q}\right) \,\mathrm {d}x\right] {\text{div}} \left( |\nabla u|^{p-2}\nabla u + a(x) |\nabla u|^{q-2}\nabla u \right) \\&\quad = \lambda u^{-\gamma } +u^{p^*-1}&\quad \text {in } \Omega ,\\&u > 0&\quad \text {in } \Omega ,\\&u = 0&\quad \text {on } \partial \Omega , \end{aligned} \end{aligned}$$
-
m
∫
Ω
|
∇
u
|
p
p
+
a
(
x
)
|
∇
u
|
q
q
d
x
div
|
∇
u
|
p
-
2
∇
u
+
a
(
x
)
|
∇
u
|
q
-
2
∇
u
=
λ
u
-
γ
+
u
p
∗
-
1
in
Ω
,
u
>
0
in
Ω
,
u
=
0
on
∂
Ω
,
where $$\Omega \subset {\mathbb {R}}^N$$
Ω
⊂
R
N
is a bounded domain with Lipschitz boundary $$\partial \Omega $$
∂
Ω
, $$N\ge 2$$
N
≥
2
, m represents a Kirchhoff coefficient, $$1<p<q<p^*$$
1
<
p
<
q
<
p
∗
with $$p^*=Np/(N-p)$$
p
∗
=
N
p
/
(
N
-
p
)
being the critical Sobolev exponent to p, a bounded weight $$a(\cdot )\ge 0$$
a
(
·
)
≥
0
, $$\lambda >0$$
λ
>
0
and $$\gamma \in (0,1)$$
γ
∈
(
0
,
1
)
. By the Nehari manifold approach, we establish the existence of at least one weak solution.
Funder
Technische Universität Berlin
Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. Ambrosio, V., Isernia, T.: A multiplicity result for a $$(p, q)$$-Schrödinger-Kirchhoff type equation. Ann. Mat. Pura Appl. (4) 201(2), 943–984 (2022)
2. Arora, R., Fiscella, A., Mukherjee, T., Winkert, P.: On double phase Kirchhoff problems with singular nonlinearity, arXiv.org/abs/2111.07565
3. Autuori, G., Pucci, P.: Existence of entire solutions for a class of quasilinear elliptic equations. NoDEA Nonlinear Differ. Equ. Appl. 20(3), 977–1009 (2013)
4. Baroni, P., Colombo, M., Mingione, G.: Harnack inequalities for double phase functionals. Nonlinear Anal. 121, 206–222 (2015)
5. Baroni, P., Colombo, M., Mingione, G. (2018) Regularity for general functionals with double phase, Calc. Var. Partial Differ. Equ. 57(2), Art. 62, 48 pp
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献