Multi-scale Coupled Processes Modeling of Fractures as Porous, Interfacial and Granular Systems from Rock Images with the Numerical Manifold Method

Author:

Hu Mengsu,Rutqvist Jonny

Abstract

AbstractThe greatest challenges of rigorously modeling coupled hydro-mechanical processes in fractured rocks at different scales are associated with computational geometry. In addition, selections of continuous or discontinuous models, physical laws, and coupling priorities at different scales based on different geometric features determine the applicability of a numerical model for a certain type of problem. In this study, we present our multi-scale modeling capabilities that have been developed based on the numerical manifold method for analyzing coupled hydro-mechanical processes in fractured rocks. Based on their geometric features, the fractures are modeled as continua—finite-thickness porous zones, and discontinua—discontinuous interfaces and microscale asperities and granular systems. Different governing equations, physical laws, coupling priorities, and approaches for addressing fracture intersections and shearing are then applied to describe these. We applied these models to simulate coupled processes in fractured rocks using realistic geometry obtained from rock images at different scales. We first calculated shearing of a single fracture with different models and demonstrated the impacts of asperities on shearing. We then applied the continuous and discontinuous models to simulate a network of rough fractures, demonstrating that contact dynamics contribute significantly to the geometric, multi-physical evolution of systems where rough fractures are not mineral filled. For a discrete fracture network, our coupled processes modeling demonstrates that shearing of the discrete fractures can have a major impact on stress and pore pressure distribution. Lastly, we applied the discontinuous granular model to simulate evolution of a complex granular system with a deformation band, demonstrating that the deformation band can dominate contact dynamics, the structural and the stress evolution of the granular system.

Funder

Chemical Sciences, Geosciences, and Biosciences Division

Office of Nuclear Energy

Lawrence Berkeley National Laboratory

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3