Evaluation of the Diametrical Core Deformation and Discing Analyses for In-Situ Stress Estimation and Application to the 4.9 km Deep Rock Core from the Basel Geothermal Borehole, Switzerland

Author:

Ziegler MartinORCID,Valley Benoît

Abstract

AbstractThe in situ state of rock mass stresses is a key design parameter, e.g., for deep engineered geothermal systems. However, knowledge of the stress state at great depths is sparse mostly because of the lack of possible in situ tests in deep boreholes. Among different options, core-based in situ stress estimation may provide valuable stress information though core-based techniques have not yet become a standard. In this study we focus on the Diametrical Core Deformation Analysis (DCDA) technique using monzogranitic to monzonitic rock drill cores from 4.9 km depth of the Basel-1 borehole in Switzerland. With DCDA the maximum and minimum horizontal stress (SHmax and Shmin) directions, and the horizontal differential stress magnitudes (∆S) can be estimated from rock cores extracted from vertical boreholes. Our study has three goals: first, to assess photogrammetric core scanning to conduct DCDA; second, to compare DCDA results with borehole breakout and stress-induced core discing fracture (CDF) data sets; and third, to investigate the impact of rock elastic anisotropy on ∆S. Our study reveals that photogrammetric scanning can be used to extract reliable core diametrical data and CDF traces. Locally aligned core pieces showed similar SHmax orientations, conform to borehole breakout results. However, the variability of core diametrical differences was large for the Basel-1 core pieces, which leads to a large spread of ∆S. Finally, we demonstrate that core elastic anisotropy must be considered, requiring robust estimates of rock elastic moduli, to receive valuable stress information from DCDA analyses.

Funder

ETH Zurich

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference49 articles.

1. Bankwitz P, Bankwitz E (1997) Fractographic features on joints in KTB drill cores as indicators of the contemporary stress orientation. Geol Rundsch 86:34–44

2. Bourbié T, Coussy O, Zinszner B (1987) Acoustics of porous media. Gulf Publishing Company, Houston

3. Braun R (2007) Analyse gebirgsmechanischer Versagenszustände beim Geothermieprojekt Basel. Internal Report, Dr. Roland Braun Consultancy in Rock Mechanics, Schwielowsee

4. Christensen NI (1989) Section VI. Seismic velocities. In: Carmichael RS (ed) Practical handbook of physical properties of rocks and minerals. CRC Press, Boca Raton, pp 429–546

5. Corthésy R, Leite MH (2008) A strain-softening numerical model of core discing and damage. IJRMMS 45:329–350. https://doi.org/10.1016/j.ijrmms.2007.05.005

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3