Fracturing Gels as Analogs to Understand Fracture Behavior in Shale Gas Reservoirs

Author:

Li Zheng,Wang Jingyi,Gates Ian D.ORCID

Abstract

AbstractHydraulic fracturing is widely used in the exploitation of unconventional reservoirs, such as shale gas and tight gas. However, a full understanding of the activation of natural fractures, prediction of fracture growth, distribution of proppant, and network fracture system effectiveness remain unresolved. The onset of fracturing in the media requires energy and this is due to the buildup of pressure within the rock due to continuous injection of fluid. In other words, when the energy associated with the injection fluid reaches the fracture strength of the rock, the fracture initiates and propagates into the formation. Here, we use gelatin in hydraulic fracturing laboratory tests and compare the results to a modified radial hydraulic fracturing theory. The mechanics of the gelatin, procedures to make a testing gelatin block, and procedures to conduct the test are described. The results show that the fracture evolving behaviours from experiments are well matched by the theory. The results are then scaled up to understand fracture growth behaviour in a tight rock reservoir.

Funder

Canada First Research Excellence Fund

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3