Performance Optimization Across the Edge-Cloud Continuum: A Multi-agent Rollout Approach for Cloud-Native Application Workload Placement

Author:

Soumplis PolyzoisORCID,Kontos Georgios,Kokkinos Panagiotis,Kretsis Aristotelis,Barrachina-Muñoz Sergio,Nikbakht Rasoul,Baranda Jorge,Payaró Miquel,Mangues-Bafalluy Josep,Varvarigos Emmanuel

Abstract

AbstractThe advancements in virtualization technologies and distributed computing infrastructures have sparked the development of cloud-native applications. This is grounded in the breakdown of a monolithic application into smaller, loosely connected components, often referred to as microservices, enabling enhancements in the application’s performance, flexibility, and resilience, along with better resource utilization. When optimizing the performance of cloud-native applications, specific demands arise in terms of application latency and communication delays between microservices that are not taken into consideration by generic orchestration algorithms. In this work, we propose mechanisms for automating the allocation of computing resources to optimize the service delivery of cloud-native applications over the edge-cloud continuum. We initially introduce the problem’s Mixed Integer Linear Programming (MILP) formulation. Given the potentially overwhelming execution time for real-sized problems, we propose a greedy algorithm, which allocates resources sequentially in a best-fit manner. To further improve the performance, we introduce a multi-agent rollout mechanism that evaluates the immediate effect of decisions but also leverages the underlying greedy heuristic to simulate the decisions anticipated from other agents, encapsulating this in a Reinforcement Learning framework. This approach allows us to effectively manage the performance–execution time trade-off and enhance performance by controlling the exploration of the Rollout mechanism. This flexibility ensures that the system remains adaptive to varied scenarios, making the most of the available computational resources while still ensuring high-quality decisions.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3