Identifying Public Tenders of Interest Using Classification Models: A Comparative Analysis

Author:

Figueroa-Gómez YeersainthORCID,Galpin IxentORCID

Abstract

AbstractPublic procurement processes related to tenders represent one of the most important financing strategies for companies in diverse sectors, as they present the opportunity to offer services, supplies and product sales to state entities. Given the high volume of public tenders in the Colombian Government SECOP II database, manually identifying tenders of interest can be a cumbersome and time-consuming process. In this work, we propose automating the identification of interesting tenders by training a supervised classification model. We manually label a sample of tenders published in the National Government open data platform, according to whether or not they are of interest to the Minuto de Dios University, and use them for model training. Several models are evaluated in order to select the best model for deployment, taking into account various metrics to determine best performance according to business needs. The best model is selected based on different analyses, comparing the application of data balancing techniques, the performance of the proposed models, and hyper-parameter settings measured against the test data.

Funder

Corporación Universitaria Minuto de Dios

Minuto de Dios University Corporation

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Computer Networks and Communications,Computer Graphics and Computer-Aided Design,Computational Theory and Mathematics,Artificial Intelligence,General Computer Science

Reference19 articles.

1. Andradóttir S. A review of random search methods. In: Handbook of simulation optimization; 2014. pp. 277–292.

2. Bentéjac C, Csörgő A, Martínez-Muñoz G. A comparative analysis of gradient boosting algorithms. Artif Intell Rev. 2021;54:1937–67.

3. Colombia Compra Eficiente. Decreto 4170 de 2011. https://www.funcionpublica.gov.co/eva/gestornormativo/norma_pdf.php?i=44643. Last Accessed 2023/05/08.

4. Colombia Compra Eficiente. SECOP II. https://colombiacompra.gov.co/ciudadanos/preguntas-frecuentes/secop-ii. Last Accessed 2023/05/08.

5. Cutler A, Cutler DR, Stevens JR. Random forests. In: Ensemble machine learning: methods and applications; 2012. pp. 157–175.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3