1. Kumar A, Singh SS, Singh K, Biswas B. Link prediction techniques, applications, and performance: a survey. Physica A. 2020;553: 124289. https://doi.org/10.1016/j.physa.2020.124289.
2. Yuliansyah H, Othman ZA, Bakar AA. Taxonomy of link prediction for social network analysis: a review. IEEE Access. 2020;8:183470–87. https://doi.org/10.1109/ACCESS.2020.3029122.
3. Rossi A, Barbosa D, Firmani D, Matinata A, Merialdo P. Knowledge graph embedding for link prediction: a comparative analysis. ACM Trans Knowl Discov Data. 2021;15(2):1–49. https://doi.org/10.1145/3424672.
4. Zhu Z, Zhang Z, Xhonneux L.P., Tang J. Neural Bellman-Ford networks: a general graph neural network framework for link prediction. In: Ranzato M, Beygelzimer A, Dauphin Y, Liang PS, Vaughan JW, editors. Advances in Neural Information Processing Systems, Curran Associates, Inc., 2021, pp. 29476–29490. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2021/file/f6a673f09493afcd8b129a0bcf1cd5bc-Paper.pdf.
5. Yun S, Kim S, Lee J, Kang J, Kim HJ. Neo-GNNs: neighborhood overlap-aware graph neural networks for link prediction. In: Ranzato M, Beygelzimer A, Dauphin Y, Liang PS, Vaughan JW, editors. Advances in neural information processing systems, Curran Associates, Inc., 2021, pp. 13683–13694. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2021/file/71ddb91e8fa0541e426a54e538075a5a-Paper.pdf.