Author:
Chakraborti Debsoumya,Kim Jaehoon,Lee Hyunwoo,Seo Jaehyeon
Abstract
AbstractIt is well-known that every tournament contains a Hamilton path, and every strongly connected tournament contains a Hamilton cycle. This paper establishes transversal generalizations of these classical results. For a collection $$\textbf{T}=(T_1,\dots ,T_m)$$
T
=
(
T
1
,
⋯
,
T
m
)
of not-necessarily distinct tournaments on a common vertex set V, an m-edge directed graph $$\mathcal {D}$$
D
with vertices in V is called a $$\textbf{T}$$
T
-transversal if there exists a bijection $$\phi :E(\mathcal {D})\rightarrow [m]$$
ϕ
:
E
(
D
)
→
[
m
]
such that $$e\in E(T_{\phi (e)})$$
e
∈
E
(
T
ϕ
(
e
)
)
for all $$e\in E(\mathcal {D})$$
e
∈
E
(
D
)
. We prove that for sufficiently large m with $$m=|V|-1$$
m
=
|
V
|
-
1
, there exists a $$\textbf{T}$$
T
-transversal Hamilton path. Moreover, if $$m=|V|$$
m
=
|
V
|
and at least $$m-1$$
m
-
1
of the tournaments $$T_1,\ldots ,T_m$$
T
1
,
…
,
T
m
are assumed to be strongly connected, then there is a $$\textbf{T}$$
T
-transversal Hamilton cycle. In our proof, we utilize a novel way of partitioning tournaments which we dub $$\textbf{H}$$
H
-partition.
Funder
Korea Advanced Institute of Science and Technology
Publisher
Springer Science and Business Media LLC
Reference21 articles.
1. Aharoni, R., DeVos, M., de la Maza, S. G. H., Montejano, A., Šámal, R.: “A rainbow version of Mantel’s theorem”. In: Adv. Comb. , Paper No. 2, 12. https://doi.org/10.19086/aic.12043 (2020)
2. Aharoni, R., Howard, D.: A rainbow $$r$$-partite version of the Erdős-Ko-Rado theorem. Combin. Probab. Comput. 26(3), 321–337 (2017d). https://doi.org/10.1017/S0963548316000353
3. Imre, B.: A generalization of Carathéodory’s theorem’’. Discrete Math. 40(2–3), 141–152 (1982). https://doi.org/10.1016/0012-365X(82)90115-7
4. Chakraborti, D., Im, S., Kim, J., Liu, H.: A bandwidth theorem for graph transversals. (2023). arXiv:2302.09637 [math.CO]
5. Chakraborti, D., Kim, J., Lee, H., Liu, H., Seo, J.: On a rainbow extremal problem for color-critical graphs. Random Struct. Algorithms 64(2), 460–489 (2024)