Abstract
AbstractGiven a graph G and a parameter r, we define the r-local matroid of G to be the matroid generated by its cycles of length at most r. Extending Whitney’s abstract planar duality theorem from 1932, we prove that for every r the r-local matroid of G is co-graphic if and only if G admits a certain type of embedding in a surface, which we call r-planar embedding. The maximum value of r such that a graph G admits an r-planar embedding is closely related to face-width, and such embeddings for this maximum value of r are quite often embeddings of minimum genus. Unlike minimum genus embeddings, these r-planar embeddings can be computed in polynomial time. This provides the first systematic and polynomially computable method to construct for every graph G a surface so that G embeds in that surface in an optimal way (phrased in our notion of r-planarity).
Funder
Technische Universität Bergakademie Freiberg
Publisher
Springer Science and Business Media LLC