A Whitney Type Theorem for Surfaces: Characterising Graphs with Locally Planar Embeddings

Author:

Carmesin Johannes

Abstract

AbstractGiven a graph G and a parameter r, we define the r-local matroid of G to be the matroid generated by its cycles of length at most r. Extending Whitney’s abstract planar duality theorem from 1932, we prove that for every r the r-local matroid of G is co-graphic if and only if G admits a certain type of embedding in a surface, which we call r-planar embedding. The maximum value of r such that a graph G admits an r-planar embedding is closely related to face-width, and such embeddings for this maximum value of r are quite often embeddings of minimum genus. Unlike minimum genus embeddings, these r-planar embeddings can be computed in polynomial time. This provides the first systematic and polynomially computable method to construct for every graph G a surface so that G embeds in that surface in an optimal way (phrased in our notion of r-planarity).

Funder

Technische Universität Bergakademie Freiberg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3