Author:
Girão António,Illingworth Freddie,Michel Lukas,Savery Michael,Scott Alex
Abstract
AbstractColour the edges of the complete graph with vertex set $${\{1, 2, \dotsc , n\}}$$
{
1
,
2
,
⋯
,
n
}
with an arbitrary number of colours. What is the smallest integer f(l, k) such that if $$n > f(l,k)$$
n
>
f
(
l
,
k
)
then there must exist a monotone monochromatic path of length l or a monotone rainbow path of length k? Lefmann, Rödl, and Thomas conjectured in 1992 that $$f(l, k) = l^{k - 1}$$
f
(
l
,
k
)
=
l
k
-
1
and proved this for $$l \geqslant (3 k)^{2 k}$$
l
⩾
(
3
k
)
2
k
. We prove the conjecture for $$l \geqslant k^3 (\log k)^{1 + o(1)}$$
l
⩾
k
3
(
log
k
)
1
+
o
(
1
)
and establish the general upper bound $$f(l, k) \leqslant k (\log k)^{1 + o(1)} \cdot l^{k - 1}$$
f
(
l
,
k
)
⩽
k
(
log
k
)
1
+
o
(
1
)
·
l
k
-
1
. This reduces the gap between the best lower and upper bounds from exponential to polynomial in k. We also generalise some of these results to the tournament setting.
Publisher
Springer Science and Business Media LLC
Reference8 articles.
1. Anderson, I.: A variance method in combinatorial number theory. Glasg. Math. J. 10, 126–129 (1969). https://doi.org/10.1017/S0017089500000677
2. Bucić, M., Letzter, S., Sudakov, B.: Monochromatic paths in random tournaments. Random Struct. Algorithms 54(1), 69–81 (2019). https://doi.org/10.1002/rsa.20780
3. de Bruijn, N.G., van Ebbenhorst Tengbergen, Ca., Kruyswijk, D.: On the set of divisors of a number. Nieuw Archief voor Wiskunde 2(23), 191–193 (1951)
4. Erdős, P., Rado, R.: A combinatorial theorem. J. Lond. Math. Soc. s1-25(4), 249–255 (1950). https://doi.org/10.1112/jlms/s1-25.4.249
5. Jiang, T., Mubayi, D.: New upper bounds for a canonical Ramsey problem. Combinatorica 20(1), 141–146 (2000). https://doi.org/10.1007/s004930070037
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献