Access Interval Prediction by Partial Matching for Tightly Coupled Memory Systems

Author:

Razilov Viktor,Wittig Robert,Matúš Emil,Fettweis Gerhard

Abstract

AbstractIn embedded systems, tightly coupled memories (TCMs) are usually shared between multiple masters for the purpose of hardware efficiency and software flexibility. On the one hand, memory sharing improves area utilization, but on the other hand, this can lead to a performance degradation due to an increase in access conflicts. To mitigate the associated performance penalty, access interval prediction (AIP) has been proposed. In a similar fashion to branch prediction, AIP exploits program flow regularity to predict the cycle of the next memory access. We show that this structural similarity allows for adaption of state-of-the-art branch predictors, such as Prediction by Partial Matching (PPM) and the TAgged GEometric history length (TAGE) branch predictor. Our analysis on memory access traces reveals that PPM predicts 99 percent of memory accesses. As PPM does not lend itself to hardware implementation, we also present the PPM-based TAGE access interval predictor which attains an accuracy of over 97 percent outperforming all previously presented implementable AIP schemes.

Funder

Bundesministerium für Bildung und Forschung

Technische Universität Dresden

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enlarging the Time Budget for Neural Network Based Predictors for Access Interval Prediction;2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA);2024-02-01

2. Access Interval Prediction with Neural Networks for Tightly Coupled Memory Systems;2023 26th Euromicro Conference on Digital System Design (DSD);2023-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3