Skip to main content
Log in

Seasonal prediction of extreme high-temperature days over the Yangtze River basin

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Extreme high temperatures occur frequently over the densely populated Yangtze River basin (YRB) in China during summer, significantly impacting the local economic development and ecological system. However, accurate prediction of extreme high-temperature days in this region remains a challenge. Unfortunately, the Climate Forecast System Version 2 (CFSv2) exhibits poor performance in this regard. Thus, based on the interannual increment approach, we develop a hybrid seasonal prediction model over the YRB (HMYRB) to improve the prediction of extreme high-temperature days in summer.The HMYRB relies on the following four predictors: the observed preceding April–May snowmelt in north western Europe; the snow depth in March over the central Siberian Plateau; the CFSv2-forecasted concurrent summer sea surface temperatures around the Maritime Continent; and the 200-hPa geopotential height over the Tibetan Plateau. The HMYRB indicates good capabilities in predicting the interannual variability and trend of extreme high-temperature days, with a markable correlation coefficient of 0.58 and a percentage of the same sign (PSS) of 76% during 1983–2015 in the one-year-out cross-validation. Additionally, the HMYRB maintains high PSS skill (86%) and robustness in the independent prediction period (2016–2022). Furthermore, the HMYRB shows a good performance for years with high occurrence of extreme high-temperature days, with a hit ratio of 40%. These predictors used in HMYRB are beneficial in terms of the prediction skill for the average daily maximum temperature in summer over the YRB, albeit with biases existing in the magnitude. Our study provides promising insights into the prediction of 2022-like hot extremes over the YRB in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cao D, Xu K, Huang Q L, Tam C Y, Chen S, He Z, Wang W. 2022. Exceptionally prolonged extreme heat waves over South China in early summer 2020: The role of warming in the tropical Indian Ocean. Atmos Res, 278: 106335

    Article  Google Scholar 

  • Chen R, Li X. 2023. Causes of the persistent merging of the western North Pacific subtropical high and the Iran high during late July 2022. Clim Dyn, 61: 2285–2297

    Article  Google Scholar 

  • Ding T, Qian W, Yan Z. 2010. Changes in hot days and heat waves in China during 1961–2007. Intl J Clim, 30: 1452–1462

    Article  Google Scholar 

  • Fan K, Wang H J. 2010. Seasonal prediction of summer temperature over Northeast China using a year-to-year incremental approach. Acta Meteor Sinica, 24: 269–275

    Google Scholar 

  • Fan K, Wang H J, Choi Y J. 2008. A physically-based statistical forecast model for the middle-lower reaches of the Yangtze River Valley summer rainfall. Chin Sci Bull, 53: 602–609

    Article  Google Scholar 

  • Groisman P Y, Karl T R, Knight R W, Stenchikov G L. 1994. Changes of snow cover, temperature, and radiative heat balance over the northern hemisphere. J Clim, 7: 1633–1656

    Article  ADS  Google Scholar 

  • He C, Zhou T, Zhang L, Chen X, Zhang W. 2023. Extremely hot East Asia and flooding western South Asia in the summer of2022 tied to reversed flow over Tibetan Plateau. Clim Dyn, 61: 2103–2119

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, De Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan R J, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut J. 2020. The ERA5 global reanalysis. Quart J R Meteoro Soc, 146: 1999–2049

    Article  ADS  Google Scholar 

  • Hong H, Sun J, Wang H. 2022. Variations in summer extreme high-temperature events over northern Asia and the possible mechanisms. J Clim, 35: 335–357

    Article  ADS  Google Scholar 

  • Huang R, Gu L, Zhou L, Wu S. 2006. Impact of the thermal state of the tropical western Pacific on onset date and process of the South China Sea summer monsoon. Adv Atmos Sci, 23: 909–924

    Article  Google Scholar 

  • Huang Y, Wang H, Zhang P. 2022. A skillful method for precipitation prediction over eastern China. Atmos Ocean Sci Lett, 15: 100133

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • Jiang J, Liu Y, Mao J, Wu G. 2023. Extreme heatwave over Eastern China in summer 2022: The role of three oceans and local soil moisture feedback. Environ Res Lett, 18: 044025

    Article  ADS  Google Scholar 

  • Jiménez-Esteve B, Domeisen D I V. 2022. The role of atmospheric dynamics and large-scale topography in driving heatwaves. Quart J R Meteoro Soc, 148: 2344–2367

    Article  ADS  Google Scholar 

  • Li H, Sun B, Wang H, Zhou B, Duan M. 2022. Mechanisms and physical-empirical prediction model of concurrent heatwaves and droughts in July–August over northeastern China. J Hydrol, 614: 128535

    Article  Google Scholar 

  • Li J, Ding T, Jia X, Zhao X. 2015. Analysis on the extreme heat wave over China around Yangtze River region in the summer of 2013 and its main contributing factors. Adv Meteor, 2015: 1–15

    Article  Google Scholar 

  • Lu R, Xu K, Chen R, Chen W, Li F, Lv C. 2023. Heat waves in summer 2022 and increasing concern regarding heat waves in general. Atmos Ocean Sci Lett, 16: 100290

    Article  Google Scholar 

  • Ma F, Yuan X. 2023. When will the unprecedented 2022 summer heat waves in Yangtze River Basin become normal in a warming climate? Geophys Res Lett, 50: e2022GL101946

    Article  ADS  Google Scholar 

  • Ma S M, Zhu C W, Liu B Q. 2021. Possible causes of persistently extreme-hot-days-related circulation anomalies in Yunnan from April to June 2019 (in Chinese). Chin J of Atmos Sci, 45: 165–180

    Google Scholar 

  • Matsumura S, Yamazaki K. 2012. Eurasian subarctic summer climate in response to anomalous snow cover. J Clim, 25: 1305–1317

    Article  ADS  Google Scholar 

  • Murphy A H. 1988. Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon Wea Rev, 116: 2417–2424

    Article  ADS  MathSciNet  Google Scholar 

  • Rayner N A, Parker D E, Horton E B, Folland C K, Alexander L V, Rowell D P, Kent E C, Kaplan A. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res, 108: 4407

    Google Scholar 

  • Rodell M, Houser P R, Jambor U, Gottschalck J, Mitchell K, Meng C J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin J K, Walker J P, Lohmann D, Toll D. 2004. The global land data assimilation system. Bull Amer Meteor Soc, 85: 381–394

    Article  ADS  Google Scholar 

  • Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou Y T, Chuang H, Iredell M, Ek M, Meng J, Yang R, Mendez M P, van den Dool H, Zhang Q, Wang W, Chen M, Becker E. 2014. The NCEP climate forecast system version 2. J Clim, 27: 2185–2208

    Article  ADS  Google Scholar 

  • Shinoda M. 2001. Climate memory of snow mass as soil moisture over central Eurasia. J Geophys Res, 106: 33393–33403

    Article  ADS  Google Scholar 

  • Sun Y, Chen H, Zhu S, Zhang J, Wei J. 2021. Influence of the eurasian spring snowmelt on summer land surface warming over northeast Asia and its associated mechanism. J Clim, 34: 4851–4869

    Article  ADS  Google Scholar 

  • Takaya K, Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci, 58: 608–627

    Article  ADS  Google Scholar 

  • Tang S, Qiao S, Feng T, Wang Y, Yang Y, Zhang Z, Feng G. 2021. Asymmetry of probabilistic prediction skills of the midsummer surface air temperature over the middle and lower reach of the Yangtze River valley. Clim Dyn, 57: 3285–3302

    Article  Google Scholar 

  • Wang W, Zhou W, Li X, Wang X, Wang D. 2016. Synoptic-scale characteristics and atmospheric controls of summer heat waves in China. Clim Dyn, 46: 2923–2941

    Article  Google Scholar 

  • Wang Z, Luo H, Yang S. 2023. Different mechanisms for the extremely hot central-eastern China in July-August 2022 from a Eurasian large-scale circulation perspective. Environ Res Lett, 18: 024023

    Article  ADS  Google Scholar 

  • WMO. 2022. State of the Global Climate 2021. 1290 (World Meteorological Organization (WMO))

  • Xiong K, Feng G, Wang Q, Hu J. 2009. Spatial-temporal characteristics of record-breaking temperature events over China in recent 46 years (in Chinese). Acta Phys Sin, 58: 8107–8115

    Article  CAS  Google Scholar 

  • Xu L, Dirmeyer P. 2013. Snow-atmosphere coupling strength. Part II: Albedo effect versus hydrological effect. J Hydrometeorol, 14: 404–418

    Article  ADS  Google Scholar 

  • Yang K, Zhang J, Wu L, Wei J. 2019. Prediction of summer hot extremes over the middle and lower reaches of the Yangtze River valley. Clim Dyn, 52: 2943–2957

    Article  Google Scholar 

  • Ye K, Lau N C. 2019. Characteristics of Eurasian snowmelt and its impacts on the land surface and surface climate. Clim Dyn, 52: 1115–1138

    Article  Google Scholar 

  • Yin Z, Zhou B, Duan M, Chen H, Wang H. 2023. Climate extremes become increasingly fierce in China. Innovation, 4: 100406

    PubMed  PubMed Central  Google Scholar 

  • Zhang D, Chen L, Yuan Y, Zuo J, Ke Z. 2023. Why was the heat wave in the Yangtze River valley abnormally intensified in late summer 2022? Environ Res Lett, 18: 034014

    Article  ADS  Google Scholar 

  • Zhu B, Sun B, Wang H. 2022. Increased interannual variability in the dipole mode of extreme high-temperature events over East China during summer after the early 1990s and associated mechanisms. J Clim, 35: 1347–1364

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2022YFF0801604).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhicong Yin or Huijun Wang.

Ethics declarations

Conflict of interest The authors declare that there are no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, S., Yin, Z., Duan, M. et al. Seasonal prediction of extreme high-temperature days over the Yangtze River basin. Sci. China Earth Sci. (2024). https://doi.org/10.1007/s11430-023-1265-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11430-023-1265-2

Keywords

Navigation