Abstract
AbstractThe use of authentic real-world problems that reflect the applied nature of mathematics is not prevalent in formal secondary school settings. In this study, we explore the interface between workplace mathematics, particularly tech-related real-world (TRW) problems, and school mathematics, through the explication of mathematical modeling. The research questions are (1) in which tech domains can real-world problems be identified that can be addressed using mathematical modeling for the secondary school level? (2) Which methods do engineers use to simplify tech-related problems for non-experts in their field? (3) In which areas in the secondary mathematics curriculum can TRW problems be mapped? We present a three-phase model which yielded the creation of a pool of 169 TRW problems. The first two phases of the model included extracting authentic problems from the work of tech engineers and simplifying them to be meaningful or perceivable to students. These were explored by conducting task-oriented interviews with senior tech engineers and scientists from leading companies and universities. The third phase was accomplished by interviewing mathematics education experts, and included verifying the compatibility of the problems with the formal, secondary-level mathematics curriculum. The study has methodological, theoretical, and practical contributions. These include methodology that enables identifying TRW problems that are compliant with the secondary mathematics curriculum; adding to the literature about mathematical modeling by demonstrating the interface between workplace mathematics and school mathematics; and creating a large pool of TRW problems that can be used in secondary school math lessons.
Publisher
Springer Science and Business Media LLC
Subject
Education,General Mathematics
Reference51 articles.
1. Bakker, A. (2014). Characterising and developing vocational mathematical knowledge. Educational Studies in Mathematics, 86(2), 151–156.
2. Beswick, K. (2011). Putting context in context: An examination of the evidence for the benefits of ‘contextualised’ tasks. International Journal of Science and Mathematics Education, 9(2), 367–390.
3. Blum, W., Galbraith, P., Henn, H.-W., & Niss, M. (Eds.). (2006). Applications and modelling in mathematics education. New ICMI studies series no. 10. New York, NY: Springer.
4. Blum, W., & Leiss, D. (2007). How do students and teachers deal with mathematical modelling problems? The example “Sugarloaf” and the DISUM Project. In C. Haines, P. L. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA12)—education, engineering and economics (pp. 222–231). Chichester, UK: Horwood.
5. Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects – state trends and issues in mathematics instruction. Educational Studies in Mathematics, 22, 37–68.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献