Deep Study on Fouling Modelling of Ultrafiltration Membranes Used for OMW Treatment: Comparison Between Semi-empirical Models, Response Surface, and Artificial Neural Networks

Author:

Cifuentes-Cabezas Magdalena,Bohórquez-Zurita José Luis,Gil-Herrero Sandra,Vincent-Vela María Cinta,Mendoza-Roca José Antonio,Álvarez-Blanco Silvia

Abstract

AbstractOlive oil production generates a large amount of wastewater called olive mill wastewater. This paper presents the study of the effect of transmembrane pressure and cross flow velocity on the decrease in permeate flux of different ultrafiltration membranes (material and pore size) when treating a two-phase olive mill wastewater (olive oil washing wastewater). Both semi-empirical models (Hermia models adapted to tangential filtration, combined model, and series resistance model), as well as statistical and machine learning methods (response surface methodology and artificial neural networks), were studied. Regarding the Hermia model, despite the good fit, the main drawback is that it does not consider the possibility that these mechanisms occur simultaneously in the same process. According to the accuracy of the fit of the models, in terms of R2 and SD, both the series resistance model and the combined model were able to represent the experimental data well. This indicates that both cake layer formation and pore blockage contributed to membrane fouling. The inorganic membranes showed a greater tendency to irreversible fouling, with higher values of the Ra/RT (adsorption/total resistance) ratio. Response surface methodology ANOVA showed that both cross flow velocity and transmembrane pressure are significant variables with respect to permeate flux for all membranes studied. Regarding artificial neural networks, the tansig function presented better results than the selu function, all presenting high R2, ranging from 0.96 to 0.99. However, the comparison of all the analyzed models showed that depending on the membrane, one model fits better than the others. Finally, through this work, it was possible to provide a better understanding of the data modelling of different ultrafiltration membranes used for the treatment of olive mill wastewater.

Funder

Ministry of Economy, Industry and Competitiveness of Spain

European Social Fund

Universidad Politècnica de València

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Safety, Risk, Reliability and Quality,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3