Author:
Aytar Erdi Can,Aydın Betül
Abstract
AbstractThis study investigates the chemical composition and antioxidant properties of coffee beans at different roasting stages, namely green coffee, filter-roasted coffee, and espresso-roasted coffee. Using a Golden Roaster machine, specific roasting profiles were developed to achieve distinct flavor characteristics: an intense flavor and balanced acidity for espresso, and a balanced, complex taste for filter coffee. Results indicate that filter-roasted coffee exhibits the highest radical scavenging activity, as evidenced by its lowest IC50 value for 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition. Green coffee demonstrates superior iron chelation activity, while filter-roasted coffee contains the highest flavonol content and espresso-roasted coffee has the highest flavonoid content. Bacterial sensitivity tests show that both filter-roasted and espresso-roasted coffee are effective against certain strains, including Klebsiella pneumoniae ATCC 13883. Gas chromatography-mass spectrometry (GC–MS) analysis identifies key compounds such as caffeine and 4,4-dimethyl-3-(3-methylbut-3-enylidene)-2-methylenebicyclo [4.1.0] heptane in filter-roasted coffee, and 2-(2-hydroxyphenyl) buta-1,3-diene in espresso-roasted coffee. Molecular docking and in silico molecule’s absorption, distribution, metabolism, excretion, and toxicity (ADME) studies suggest potential pharmaceutical applications for coffee compounds. These findings provide valuable insights into coffee’s complex chemistry and its health-related properties. Additionally, the importance of coffee profiling in bioprocesses is highlighted by the need to carefully analyze the profiling process to optimize the biological effects and health benefits of these compounds. Coffee profiling not only enhances consumer taste experiences but also contributes to a better understanding of coffee’s potential health benefits by effectively identifying biomolecules and nutrients for use in bioprocesses.
Graphical Abstract
Publisher
Springer Science and Business Media LLC